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Abstract

In robotics, the state space of a dynamical system is a vector space where each vector
corresponds to a possible configuration of the robot. Each component of the state vector is a
position or a velocity of some part of the system. Adding more degrees of freedom increases
the size of the state space exponentially—a concept known as the curse of dimensionality.
For complicated systems, it becomes computationally impossible to analyze the state space,
a step that is necessary for designing control policies that would, for example, enable a
walking robot to maintain its stability. Thus arises the need for techniques to reduce the
information contained in given data while maintaining accuracy. This research explores two
of these methods: meshing and principal components analysis. A mesh discretizes a set of
points in continuous space according to a specified box length and groups together nearby
points. Principal components analysis makes use of the fact that attractors commonly have
self-similar structures and exist in a lower number of dimensions than the original space. In
this study, both techniques are implemented on the dataset outputted by a simulation of the
2D planar walker, and the runtimes are graphed as a function of accuracy to the original
dataset. It is shown that the runtime decreases as expected. This concept can be applied to
find the best tradeoff between time and accuracy for designing an optimal feedback policy
for a robotic system.



1 Introduction

Dynamical systems are systems that evolve over time, whether approaching an equi-

librium state, a repeating cycle, or something more complicated [1]. Simple examples of

dynamical systems include a pendulum or a moving particle [2]. In robotics, a legged robot

is classified as a dynamical system because its future state depends on its current state.

The entire system’s state can be represented as a vector of positions and velocities, either

linear or angular, or a combination of both [3]. At every point in time, the system is in

a state that depends on the previous one and determines the next one. Over a period of

time, as the system changes, so does the vector that represents it. This vector resides in

a vector space known as the state space, which, for a complicated robotic system, can be

upwards of a hundred dimensions [2]. One version of the Multi-Joint dynamics with Contact

(MuJoCo) simulation planar walker, for example, is a five-link humanoid model that moves

in the yz-plane (as opposed to three-dimensional space). Despite its “simplicity,” the state

vector consists of 17 dimensions. Analyzing a robot’s movement and its corresponding path

in state space becomes computationally difficult in these high-dimensional spaces for a rea-

son known as the curse of dimensionality, which states that the number of points increases

exponentially on the number of dimensions [4].

Thus, arises a need to somehow simplify a set of points to find locations where the

system migrates to over time. These are known as attractors, and they can be fixed points,

limit cycles, or strange attractors [1]. Strange attractors in particular are difficult to find

because they are complex geometric shapes and might not be as visually obvious as simple

limit cycles. Techniques to reduce the dimension of the data generated by legged locomotion

systems in this research include principal component analysis, as well as the quantization of

sets of points in the same general area. From this, a set of finite states, the number of which is

less than or equal to the original number of points, can be used to create a transition matrix.
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The necessity of reducing both the dimension and number of points becomes apparent during

this construction of a large matrix, as the size of the matrix is equal to the number of states.

Performing this calculation for a complicated system would push the limits of computing

power.

For this reason, the goal of this research is to analyze actual simulation data of legged

locomotion systems in a way that is both efficient and accurate. When applied to robots

in the real world, this would allow autonomous robots to make quick judgements about

their state and form decisions based on these perceptions, which is one more step towards

achieving artificial intelligence.

2 Methods

2.1 Data Collection

The data used in this experiment are the outputs of simulations run by Sean Gillen at

the University of California, Santa Barbara. Three different models were run in the MuJoCo

physics simulation engine.

Figure 1: From left to right: walker, hopper, half cheetah [5]

Each model was run with a random seed and from five different initial conditions. For

each run, the output was three matrices: observations, actions, and rewards. The observations

matrices are the only data considered in this research, as they represent the state vector over
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discrete time intervals. All observations matrices consist of 1000 points, which are observed

at these intervals. Before performing any further analysis, the raw data are first normalized

to have mean 0 and variance 1.

2.2 Principal Component Analysis

Principal Component Analysis (PCA) is a common way of processing high-dimensional

data into a smaller number of dimensions. It finds the most important, or “principal,” com-

ponents of a large data set and expresses the set of points using only those coordinates, thus

getting rid of some of the less important dimensions and making the data easier to process

[6]. For this analysis, the pca function in MATLAB is implemented in a helper function

that also takes into account a desired minimum percent of retained variance. The data is

projected onto the lower-dimensional space and saved as the new set of points.

2.3 Meshing

Creating a mesh of the data allows for the discretization of points in the state space and

groups together “nearby” states. This is implemented in MATLAB using the floor function,

mapping each point in each dimension to the nearest integer interval of r, the mesh size. r
2

is

added back to all components to center it to the middle of the interval. Once the points have

been quantized according to the mesh, they can be mapped to the integers 1 to k, where k

is the number of unique points after the mesh. This is implemented using a hash function

whose coefficients are randomly generated between 0 and 1. Once each point is mapped to

a real number, a for-loop is used to assign these to the integers from 1 to k.
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2.4 Transition Matrix

Transition matrices are used to represent finite state systems and how they evolve over

time. They are defined as

Tij = Pr(X[n+ 1] = xj | X[n] = xi) [7] (1)

where X[n] is the system’s state at time n and xi is the ith state. The construction of the

transition matrix for the given data is straightforward once each point is assigned to a state.

The ordered list is paired with itself, but offset by one index placement, and these are used

as the input arguments for the sparse matrix command. A large matrix is constructed,

with all entries equal to zero. Memory is allotted only for nonzero entries, thus saving a

significant amount of space. If the maximum number of points in any given state is n, then

the maximum number of nonzero entries in any row is n, so the majority of the entries in a

large transition matrix are 0.

Once the transition matrix is constructed, an eigenanalysis is performed to extract long

term behavior patterns from the data. This is done using eigs, a MATLAB function for

finding the first six eigenvalues and eigenvectors of a sparse matrix. The largest eigenvalue,

which is paired with the principal eigenvector, represents the eventual equilibrium of the

system over a long period of time. The vector is a distribution of probabilities, with each

index corresponding to the state with that number as its ID. This information reveals which

states are most visited and therefore more important to the data.
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3 Results

3.1 Principal Component Analysis

Figure 2: Walker data projected onto three principal components

When PCA is implemented with the minimum percent of variance retained set to 80%,

the data can be projected from 17 to 6 dimensions.

3.2 Transition Matrix

The transition matrix generated for the walker model with specific r = 1 is a 509-by-509

sparse matrix whose rows each sum to 1.

λcritical = 0.9988 (2)

The greatest eigenvalue of this matrix is 0.9988, which should theoretically be 1 by the Perron

Frobenius theorem [8], but the calculation is likely affected by roundoff error in MATLAB.

The corresponding eigenvector for this largest eigenvalue is a column vector that, when re-

scaled, consists of 509 nonnegative entries; the greatest is approximately 2.48 · 10−3 and the

least is 0.
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Figure 3: States projected onto dimensions 1 and 2 (Left: r = 0.10, Right: r = 0.20)

Figure 4: States projected onto dimensions 1 and 9 (Left: r = 0.15, Right: r = 0.20)

Other values of r were useful for plotting the states most visited by the system, as

calculated by the transition matrix. Larger markings represent a higher probability in the

corresponding index of the principal eigenvector.

6



3.3 Runtime

Figure 5: Runtime as a function of mesh length over 100 trials

The mesh size was set to a variable and iterated over a for-loop. tic and toc measured

the runtime for the construction of the transition matrix. This was performed for mesh size

from 0.01 to 7 at intervals of 0.01, over a total of 100 trials.
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4 Discussion

This research aims to find a lower-dimensional representation of the simulation data,

given that strange attractors are usually self-similar and thus of lower-than-expected dimen-

sionality. PCA gives a representation of the data in only 6 dimensions while retaining 80%

of the information. This indicates that attractors reside in a much lower dimensional space

than they first appear. A possible implication of this would be that the computing time

for processing similar structures for robots could be reduced if some of the information is

redundant [9].

The relevant runtimes are for the following:

1. Creating the mesh

2. Constructing the transition matrix

3. Analyzing the transition matrix

Each step’s time depends on the number of total points n, the dimension of each point d,

and the specified mesh size r.

4.1 Creating the mesh

See Appendix A. The points are scaled to have mean 0 and variance 1 in each dimension,

then shifted to begin at 0, a process whose runtime is bounded above by O(n × d). The

meshing takes an additional O(4(n × d)), as each component of each point is divided by r,

the floor function taken, multiplied by r, then added to r
2
. In total, this step is O(n× d).

4.2 Constructing the transition matrix

See Appendix B. Some of the most time-consuming steps in this process include the

conversion to hashed points (O(n × d)), sorting rows (O(n log n), used twice), and scaling
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rows to add to 1 (O(k2), where k is the number of distinct states). k can be expressed as a

function of r, the mesh size, using the formula Strogatz provides:

x = lim
r→0

lnN(r)

ln(1/r)
[1]

This equation states that the dimension x of a set of points can be estimated using the mesh

technique where N(r), which we have called k, is the number of points after implementing

a mesh of size r. With some algebraic manipulation, it can be shown that k = (1/r)x, so

k2 = r−2x where x is almost constant and can be treated as such. In total, the transition

matrix construction step is O(n× d + n log n + r−α).

4.3 Analyzing the transition matrix

See Appendix C The most costly function in this step is eigs, “which uses several tricks

that make the algorithm faster in the general case, but also make its convergence behavior

and computational complexity much more difficult to analyze” [10]. However, one known

upper bound is O(n3).

4.4 Further discussion

Both techniques explored in this research aim to address this issue - PCA reduces the

dimensionality of the points, and quantizing the data reduces the number of points to store

in memory. By clustering nearby points with a given mesh size to eventually label them as

the same state, the number of discrete states dropped from 1000 to 509. For longer intervals

of time, with many more than 1000 intervals, a 49% reduction in the number of states could

drastically affect computing time [11]. From these states, the experimental data of where each

point transitions in the next time interval provides the information necessary to construct a

transition matrix. The principal eigenvector of the matrix represents the stable equilibrium

state to which the system evolves over time [7]. The result of this data analysis suggests the
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presence of multiple states of higher probability in the equilibrium state, the highest one

being the most prominent state. If translated back to a vector in the original state space,

this would represent the most common position of the walker over time.

Similar work has been done in this field to effectively reduce the dimension of the state

space of a dynamical system [9, 11]. However, applying such techniques to a concrete and

interactive model such as the five link planar walker is a way to quickly and efficiently

test the practicality of these methods. The results indicate that while the state space of

complicated dynamical systems remains difficult to analyze from a computing point of view,

these techniques are promising for future research.

5 Future Work

Being able to find strange attractors for complicated systems is a problem that is not

fully solved, but the techniques discussed in this research are a step in the right direction.

Although only an analysis was performed, the most immediate successive research from here

would be to apply these data-reducing techniques to other models. The ultimate goal is to

be able to implement them in real world robots who must constantly take in measurements

from their surroundings and react to the external forces pushing them off their intended path.

Optimizing reaction time to these events is already an existing field of research, but perhaps

the combined reduction of dimension and quantization of points would enable newfound

progress in this field.

6 Conclusion

Complicated dynamical systems, especially real world humanoid robots, are represented

by state spaces that can contain up to hundreds of dimensions. When the number of di-
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mensions increases linearly, the number of points in a given area grows exponentially. For

this reason, it becomes impossible to analyze the raw data from these complicated systems.

This research studies the data from a relatively simple model - the five link planar walker -

and applies two techniques with the intention of reducing the amount of information needed

to accurately describe the model. Using principal component analysis, 17 dimensions are

reduced to 3 with minimal loss of information, and the quantization of points condenses the

data even further and allows for the construction of a transition matrix. An eigenanalysis of

this matrix produces the equilibrium state of the system, which is a prediction of its long

term behavior. These methods for analyzing the path of a model in state space can be ap-

plied where standard computational methods fail, and building upon this research may lead

to future innovation in the area of artificial intelligence in robots.
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Appendix A Creating the mesh

1 f unc t i on [ new points ] = reduce box ( o ld po in t s , r ad iu s )

2 new points = rad iu s ∗ f l o o r ( o l d p o i n t s / rad iu s ) ;

3 new points = new points + rad iu s /2 ;

4 end

Appendix B Constructing the transition matrix

1 f unc t i on [ matrix ] = t ra n s i t i on ma t ( po in t s )

2

3 num points = s i z e ( po ints , 1) ;

4 num dim = s i z e ( po ints , 2) ;

5 h a s h c o e f f = rand (1 , num dim) ;

6 hash po in t s = po in t s ∗ hash coe f f ’ ;

7 hash po in t s = sort rows ( [ hash po in t s ( 1 : num points ) ’ ] ) ;

8 hash po in t s = [ hash po in t s z e r o s ( num points , 1) ] ;

9

10 index = 1 ;

11 hash po in t s (1 , 3) = index ;

12 f o r i = 2 : num points

13 i f ( hash po in t s ( i , 1) − hash po in t s ( i −1, 1) )

14 index = index + 1 ;

15 end

16 hash po in t s ( i , 3) = index ;

17 end
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18 s t a t e s o r d e r e d = sort rows ( [ hash po in t s ( : , 2) hash po in t s ( : , 3) ] )

;

19 s t a t e s o r d e r e d = s t a t e s o r d e r e d ( : , 2) ;

20 num states = max( s t a t e s o r d e r e d ) ;

21

22 % Make t r a n s i t i o n matrix

23 s t a t e s s h i f t e d = c i r c s h i f t ( s t a t e s o r d e r e d , −1) ;

24 s t a t e s o r d e r e d = s t a t e s o r d e r e d ( 1 : ( end−1) ) ;

25 s t a t e s s h i f t e d = s t a t e s s h i f t e d ( 1 : ( end−1) ) ; % Last s t a t e goes

nowhere

26

27 matrix = spar s e ( s t a t e s o r d e r e d , s t a t e s s h i f t e d , 1 , num states ,

num states ) ;

28 sums = sum( matrix , 2) ;

29 matrix = matrix . / sums ;

30 matrix ( i snan ( matrix ) ) = 0 ;

31

32 end

Appendix C Analyzing the transition matrix

1 f unc t i on [ ] = e i g e n a n a l y s i s (T)

2

3 [ Vecs , LambdaMat ] = e i g s (T’ )

4 Lambda = diag (LambdaMat)

5
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6 [ Lsort , i dLso r t ] = s o r t ( abs (Lambda) )

7

8 I D f a i l u r e = idLso r t ( end )

9 L f a i l u r e = Lambda( I D f a i l u r e )

10 V e c f a i l = Vecs ( : , I D f a i l u r e )

11 F a i l D i s t = V e c f a i l

12

13 IDmetastable = idLso r t ( end−1)

14 Lmetastable = Lambda( IDmetastable )

15 Vecmeta = Vecs ( : , IDmetastable )

16 Vecmeta Length = s q r t (sum( Vecmeta . ˆ 2 ) )

17

18 MetaDist = Vecmeta ∗ (−1 / Vecmeta (1 ) )

19 end
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